started in Mar 2019 Plant defense detoxification strategies of herbivores in a multitrophic context Friedrich-Schiller-Universität Jena, Fakultät für Biowissenschaften First Supervisor: Prof. J. Gershenzon Co-Supervisor(s): Dr. D. Giddings Vassão
Plants from the Brassicaceae family defend themselves against herbivores by producing glucosinolate and its toxic breakdown products. Some herbivores, such as the phloem-feeding cabbage aphid Brevicoryne brassicae, have in turn evolved mechanisms to cope with these plant toxins, including even sequestration for their own defense against predators. Such herbivorous self-defense mechanisms constitute a possible route through which non-target organisms at higher trophic levels are exposed to plant defense compounds. The chemical ecology of such multitrophic interactions mediated by phloem-feeding herbivores is still scarce. For example, how predators of such a herbivore, such as ladybirds, metabolize the toxins present in their prey is largely unknown. Different ladybird species from the Coccinellidae family that appear to be more or less well-adapted to the toxins of Brevicoryne brassicae will allow us to better understand the major detoxification routes of glucosinolates in a multitrophic context. This project is being carried out as a part of the DFG-funded ChemBioSys Collaborative Research Center (chembiosys.de).